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Interfaces of Ground States in Ising Models with
Periodic Coefficients
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We study the interfaces of ground states of ferromagnetic Ising models with
external fields. We show that, if the coefficients of the interaction and the mag-
netic field are periodic, the magnetic field has zero flux over a period and is
small enough, then for every plane, we can find a ground state whose interface
lies at a bounded distance of the plane. This bound on the width of the inter-
face can be chosen independent of the plane. We also study the average energy
of the plane-like interfaces as a function of the direction. We show that there
is a well defined thermodynamic limit for the energy of the interface and that
it enjoys several convexity properties.
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1. INTRODUCTION

The goal of this paper is to study the interfaces of Ising models in which
the material has a periodic structure and is subject to a weak magnetic
field, also spatially periodic with the same period, with zero mean flux and
which is not too strong.

Roughly speaking, we will show (see Theorem 2.1 for a precise state-
ment) that such models possess ground states whose interface is plane-
like (i.e., contained between two parallel planes). The orientation of these
interfaces is arbitrary and furthermore the width of the strip containing
the interface can be chosen to be independent of the orientation. We will
also show that there is a well defined limit of the average energy of the
interface and that this limit satisfies convexity properties.
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Results similar to those above have been proved for minimal surfaces
in ref. 4. The results presented here are very similar to those above because
the energy of an Ising model is closely related to the area of the inter-
face. Indeed, the proofs presented here follow the same strategy as those
in ref. 4.

Nevertheless, because of the discrete nature of the model, some of
the technical arguments are easier. In particular, the density estimates
needed in ref. 4 are trivial for the models in the present paper. In contrast,
the arguments related to calculus are not present for the present mod-
els. Indeed, as we will see, several of the results that are established for
continuous models in refs. 5 and 6 are false even for the standard Ising
model. Notably, for the continuum models, all the minimizers have plane-
like interfaces, while this is not the case for Ising models. The minimizers
of the discrete case may not satisfy any maximum principle.

2. NOTATION AND STATEMENT OF RESULTS

2.1. Notation on Ising Models

We refer to refs. 10, 16, 17 for more information on statistical
mechanics models. Nevertheless, in this paper, we will consider only
ground states – zero temperature – and we will include most of the nota-
tion that we use.

The Ising models we will consider will be defined on a lattice Z
d

which, for convenience in some geometric arguments, we will consider as
contained in R

d . We will consider the lattice endowed with the usual �1

distance, |k|=∑d
i=1 |ki |.

A configuration s is a mapping s: Z
d →{+1,−1}. We will denote by

C the space of configurations.
Given a configuration s, we will denote by ∂s the interface of the con-

figuration. That is

∂s ={i ∈Z
d | si =+1,∃ j s. t. |i − j |=1, sj =−1} (1)

The behavior of an Ising model is described by a (formal) functional
on configurations.

H(s)=
∑

i,j∈Z
d

|i−j |�R

Jij (sisj −1)+
∑

i∈Zd

hisi (2)
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In the classical Ising model, Jij =1 but in this paper, we want to con-
sider more general models, in particular, we do not want to keep transla-
tion invariance by all vectors, even if we will assume periodicity by some
sub-lattice of vectors.

Given ω ∈ R
d , we denote �ω = {x ∈ R

d |ω · x = 0}. Clearly, �ω = �ω′
when ω is a multiple of ω′.

Remark 2.1. Some of the results that we will discuss go through for
somewhat more general models in which the interaction may be three or
more bodies or the lattice does not need to be an Euclidean lattice but
rather in a richer geometric framework considered in ref. 3.

We will not discuss such generalizations here, nevertheless, we point
out that these generalizations could be necessary to make contact with
continuum models.

The number R is referred to as the range of the interaction. In the
classical Ising models, the range is 1, which corresponds to only near-
est neighbor interactions. In this paper, we will only consider finite range
interactions, but the existence results go through for infinite range interac-
tions by taking limits.

Given a set �⊂Z
d and a number R we denote �R the set of points in

� whose distance to Z
d is smaller or equal than R. When R is the range

of the interaction, �R is the collection of sites that can interact with the
sites in �.

Given a finite set � ⊂Z
d , we define

H�(s)=
∑

i∈�, j∈Z
d ;i∈Z

d j∈�
|i−j |�R

Jij (sisj −1)+
∑

i∈�

hisi . (3)

A very important definition for us is

Definition 2.1. We say that a configuration s is a ground state when

H�(u)�H�(s)

for all u that agree with s in (Zd −�)R.

Note that Definition 2.1 only uses finite sums, so that the formal
character of the sums (2), does not matter. We also note that the notion
of ground state – quite customary in Physics – is also very similar to the
notion of class A minimizer in ref. 14.
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We recall that there is an equivalent description of the energy of Ising
models, which makes the connection with geometric questions clearer,
namely, the description of a state in terms of contours.

A configuration can be described by specifying the set

S(s)={j ∈Z
d | sj =+1} (4)

As it is customary in statistical mechanics, the boundary of the set
S can be described geometrically by placing a unit plaque perpendicularly
across each bond joining S with its complement.

Notice that ∂s, the interface of the configuration s, is very similar to
the boundary of the set S(s) and the functional is very similar to the area
of the plaques.

Remark 2.2. In the language of contours, the theory of ground
states is very similar to the theory of minimal surfaces as formulated in
the language of sets of finite perimeter.

As an illustrative example, when Jij =1

∑

|i−j |=1
i,j∈Z

d

Jij (sisj −1),

is twice the area of the contour describing S, and ground states of sys-
tems without magnetic field, correspond to surfaces whose area cannot be
decreased by making local modifications. Hence, ground states can be con-
sidered as discrete analogues of minimal surfaces.

The terms involving h correspond to volume terms in the set. In
the continuum case, the stationary points for the variational principle
Per(�)+∫

�
h have boundaries which are solution of the prescribed curva-

ture equation. (if x ∈∂� the mean curvature of ∂� at x is precisely h(x)).
See ref. 8.

There is a theory of minimal surfaces based on studying surfaces as
boundaries of sets (an account of this theory can be found in ref. 8 and it
was the basic language of ref. 4.) The analogue of the sets of finite perim-
eter in the geometric theory is the sets S(s) associated to the configura-
tions.

As it turns out, the proofs of several of the results will be follow the
strategy for the results in ref. 4, which were formulated in the language of
sets of locally finite perimeter. Of course the details of the proofs will have
to be different since many methods from calculus are not available. Indeed,
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in Section 5, there are examples that show that the straightforward ana-
logues of some of the results in refs. 5, 6 are false for the models that we
consider here.

Remark 2.3. We recall that there are two physical interpretations
that are reasonable for these models. One is that the si are the states of
spin of an atom at site i. The other – usually called lattice gases – is that
the si describe whether a site is occupied or not. In the first interpretation,
the average energy of the ground state has the interpretation of a mag-
netic energy near a wall. In the second, it is a surface tension. The physi-
cal interpretation in terms of lattice gases is very close to the mathematical
framework in terms of sets of smallest perimeter.

2.2. The assumptions of this paper

We will consider systems of the form (2) such that they are

H1. Periodic of period N . That is:

Ji+e, j+e =Jij ∀ e∈NZ
d

hi+e =hi+e ∀ e∈NZ
d

H2. – Weakly ferromagnetic. That is:

Jij �0.

– There is a c<0 such that for each site i, there is one j such that

Jij � c.

H3. The magnetic field h has zero flux

∑

i∈F

hi =0

where F is a fundamental domain for Z
d/NZ

d . That is, F ={0,1, . . . ,

N −1}d ⊂Z
d .

H4. h∗ ≡ sup |hi | sufficiently small, depending on the properties of the
model considered above.
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Remark 2.4. Sometimes, in statistical mechanics one uses a hypoth-
esis significantly stronger that H2, namely

There is a c < 0 such that for each site i, for all the j such that
|i − j |=1,

Jij � c

Which is clearly satisfied by the classical Ising model. This hypothesis does
not lead to improvements in our results. Of course, this hypothesis is cru-
cial in many of the studies in the literature which consider properties of
the models that we will not examine.

The first main result of this paper is the following

Theorem 2.1. Given any Ising model satisfying H1, H2, H3, H4
above there is M such that for every hyperplane �ω ⊂R

d of normal vec-
tor ω, we can find a ground state sω whose interface ∂sω is contained in
a strip of width M around the plane �ω.

That is:

d(∂sω,�ω)�M (5)

We will show that the M can be chosen to depend on very few prop-
erties of the model, it only depends on the dimension, the range of the
interaction, the periodicity, max |Ji,j , min |Ji,j , max |hi .

As we will see later, there are other properties which we will prove
about the interface of the ground states which appear in the conclusions of
Theorem 2.1 notably that the interfaces satisfy a so-called “Birkhoff prop-
erty” (see Proposition 3.4) which plays an important role in Aubry-Mather
theory. It was introduced in refs. 1, 11–13. Similar properties appear in the
study for geodesics on surfaces in refs. 9, 14. For PDE’s this property was
considered in ref. 15. As it turns out, the Birkhoff property for some min-
imizers does not need even the full H2 and it suffices that the system is
weakly ferromagnetic.

Remark 2.5. Note that Theorem 2.1 only claims that there exists
ground states satisfying the conclusion. As we will see, even for the classi-
cal Ising model in d =2, when the interface is not oriented along the coor-
dinate axis, it is possible to obtain ground states which do not satisfy (5).

We will refer to ground states satisfying (5) for some M as plane-like
ground states. Note that in Theorem 2.1 we show that the M can be cho-
sen uniformly for all orientations.

We will also prove another result giving the existence of an average
interface energy for all the plane like minimizers.
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Theorem 2.2. In the assumptions of Theorem 2.2.
Let � be a compact set of R

d with C1 boundary. For λ∈R
+, Denote

by λ� ={x ∈R
d |(1/λ)x ∈�}.

For ω∈R
d , |ω|=1,

Let s be a ground state whose interface lies at a bounded distance
from the plane �ω.

Then, we have:

lim
λ→∞

Hλ�(s)/λd−1 =|� ∩�ω|d−1A(ω) (6)

where | |d−1 denotes the d −1 surface area.
Note that A(ω) is independent of � and s. It is a property only of

the model.
Moreover, the function A, when extended to R

d as a positively
homogeneous function of degree 1 (i.e., A(λω) = λA(ω) for λ ∈ R

+) is
convex.

The limit in (6), is reached very uniformly. If � has C1, boundary,
there exists a constant �� depending on � – and of course, the proper-
ties of the model – but independent of ω, s such that

|Hλ�(s)/λd−1 −|� ∩�ω|d−1A(ω)|���λ−1/2 (7)

The exponent −1/2 in the remainder in (7) is not optimal. Also
it seems that one can relax the regularity requirements on the surface
�. The only thing required is that one can approximate it well by
cubes.

The physical meaning of A(ω) is the density of magnetic energy of
the interface. In the lattice gas interpretation of the model, A(ω) is a
surface tension. The homogeneity is natural if we think of ω as being a
“surface element”. That is a vector oriented along the normal and with
modulus the area.

We note that A(ω) is also related to the average action in Aubry–
Mather theory or to the stable-norm in the calculus of variations. Note,
however that the discrete nature of the problem makes it impossible to use
many of the arguments customary in these theories. Indeed, some of the
results obtain in the continuous cases are false for the discrete cases con-
sidered here.

3. PROOF OF THEOREM 2.1

The strategy of proof will be very similar to that of ref. 4. We will
establish the existence of some particular minimizers (the infimal minimiz-
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ers) for rational ω. We will show that the interfaces of these infimal min-
imizers satisfies uniform bounds that we will be able to pass to the limit
of irrational frequencies.

The first step will be to consider minimizers among configurations
which are periodic and which satisfy some constraints. Among them, we
will consider a particular one, which will enjoy special properties.

3.1. Notation

First we will develop some notation which will allow us to work com-
fortably with translations, periodicities, fundamental domains, multiplying
fundamental domains, etc.

3.1.1. Translations

We introduce the translation operators Tk, k ∈ Z
d acting on configu-

rations

(Tks)i+k = si ∀i.

An important property of the models as in (2) satisfying periodicity
is that formally for all configurations s,

H(Tks)=H(s) ∀k ∈NZ
d

in the sense that all the terms that appear on one side appear on the other.
A precise form of the above is that, for every finite set � and for

every configuration s we have

H�(Tks)=H�+k(s) ∀k ∈NZ
d . (8)

Equation (8) can be established readily noting that it is just a change
in the dummy variables in the sum.

For sets �, we introduce the notation

Tk� =� +k

Note that this consistent with the application of Tk to the character-
istic function of �. With this notation, (8) can be written as

HTk�(Tks)=H�(s).
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3.1.2. Symmetries

From now on and until further notice, we will consider ω∈(LN)−1
Z

d)

where N is the period of the model and L∈N. The frequencies of N−1
Z

d

are the frequencies that correspond to planes in the lattice given by fun-
damental domains of the symmetries of the model. The L−1 factor means
that we will be considering subharmonics.

We will prove our results for frequencies of this type and obtain esti-
mates which are rather uniform – in particular independent of L. This will
allow to extend the results to ω∈R

d by approximating it by rationals.
We denote by Rω the module

Rω ={k ∈NZ
d |ω ·k =0}

where ω ·k denotes the usual inner product. We note that, when ω is ratio-
nal, Rω is a d −1 dimensional module.

Given a module R ⊂ Z
d we denote by FR = Z

d/R a fundamental
domain of the translations in R. If R is a d −1 dimensional module FR
is isomorphic to Z

d−1
N ×Z and can be considered as a discrete version of

R
d−1/R=T

d−1 ×R.
In the case of R=Rω we will denote simply Fω rather than FRω . In

the case of R = LZ
d , L ∈ N, we will denote FLZd as FL. Note that with

this notation FN is just a fundamental domain for the system under the
translations assumed to exists in H1.

If R=LRω, L∈N we will denote FLRω =FL,ω. The sets

FA
ω ={i ∈Fω |0�ω · i �A|ω|}

FA
L,ω ={i ∈FL,ω |0�ω · i �A|ω|}

are finite sets. We note that FA
ω , FA

L,ω are invariant under translations in
Rω and LRω, respectively.

Again, we note that FA
L,ω is a covering – in the directions perpendic-

ular to ω of FA
L .

The reason behind this notation is that, since we are considering peri-
odic problems, it will be convenient to reduce ourselves to considering
them as defined in the fundamental domain of the translations, FL,ω. The
fundamental theorem is, geometrically, the product of a finite surface and
an unbounded direction, the direction of the normal ω. In order to study
problems in compact domains, we introduce cut-off versions of the fun-
damental domain, FA

L,ω. We will study the problem in the cut-off funda-
mental domain and remove the cut-off A by developing enough a priori
estimates.
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3.1.3. Symmetric configurations

Given a Z-module R we denote by PR the set of configurations
which are invariant under translations in R

PR =
{
s ∈C

∣
∣
∣ si+k = si ∀ i ∈Z

d , k ∈R
}

In the case of R=Rω we will denote PRω =Pω. Similarly PL,ω =PLRω .
We will also consider

PA
L,ω ={

s ∈PL,ω

∣
∣si =−1 when ω · i >A|ω|, si =+1 when ω · i <0

}

These classes of configurations consist of configurations which are peri-
odic in the directions parallel to the plane and satisfy boundary conditions
on the top and the bottom of the slab of width A parallel to the plane �.

When L=1 we will simply write PA
ω .

Note that a configuration in PA
L,ω is determined when we prescribe it

in the finite set FA
L,ω. (We can determine for all the other points either by

using the periodicity in the translations or by the boundary conditions.)
Note that the classes Pω above involve not only periodicity but also

some boundary conditions. We have taken the convention that ω is ori-
ented in the sense in which the conditions go from positive to negative. Of
course, since we are considering ω an arbitrary vector, taking the opposite
convention just amounts to changing ω into −ω.

When the magnetic field is not present, it is easy to see that chang-
ing s into −s does not change the energy, hence, all the results will be the
same when we change ω into −ω nevertheless, when h �≡0, in general, the
results could change when ω changes into −ω.

We will eventually take A to ∞ but, as it is well known in statistical
mechanics some information about the boundary remains.

3.1.4. Operations on configurations

We introduce the notation

(s ∧ t)i = min(si, ti) i ∈Z
d

(s ∨ t)i = max(si, ti) i ∈Z
d .
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Given any configurations s, t , there are non-negative functions α,β on the
lattice so that we can write:

s = s ∧ t +α

t = s ∧ t +β (9)

s ∨ t = s ∧ t +α +β

Note that s + t = s ∨ t + s ∧ t . We also note that if s, t ∈ PA
L,ω, then

s ∧ t, s ∨ t ∈PA
L,ω.

Remark 3.1. In comparing with ref. 4 it is useful to observe that if
we use the description of configurations by sets as in (4), we have

S(s ∨ t) =S(s)∩S(t)

S(s ∧ t) =S(s)∪S(t) (10)

3.2. Minimizers and infimal minimizers

Now, we turn our attention to the problem of producing minimizers
in spaces of periodic configurations. The goal of this section is to produce
a minimizer that enjoys some remarkable properties.

We call attention to the fact that the results of this section work
under the assumptions of weak ferromagnetism and do not require the
fact that the interaction is non-degenerate.

Since configurations on PA
L,ω are determined by the values on a the

finite set FA
L,ω, it is natural to consider a reduced energy adapted to the

periodic problem,

HFA
L,ω

(s)=
∑

i,j∈S
Jij (sisj −1)+

∑

i∈�

hisi .

The sum is extended so that we count all the bonds twice. This is
somewhat cumbersome to write since due to the periodicity of the configu-
rations, we have to take special provisions for the bonds that jump across
the boundary. The boundary corresponding to the constraint ω · i = A|ω|
has to be written slightly differently.
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Since PA
L,ω is finite it is clear that HFA

L,ω
reaches its minimum on this

set. It can, of course, well happen that there are several configurations
which achieve the minimum.

Note that the minimizers of the periodified (and constrained) prob-
lem thus produced, minimize the functional FA

L,ω among configurations in
PA

L,ω. Therefore, they satisfy (2.1) but with two important caveats: the sets
� that are at a distance bigger than R from the cut-off. That is: � ⊂{i ∈
Z

d |R|ω|�ω · i � (A−R)|ω|}. We also require that the test configurations u

in (2.1) are configurations in PA
L,ω.

At this state of the argument, there is no reason why they should be
minimizers with respect to more general perturbations that have less peri-
odicity or that violate the other constraints. Hence, the minimizers of the
reduced problem could fail to be ground states. This is, a manifestation of
symmetry breaking. Also, as it can be seen in examples in Section 5, there
could be minimizers that oscillate widely (their oscillation is proportional
to L).

Hence, we will select a particular minimizer (infimal minimizer) that
enjoys special properties. The infimal minimizer will be selected roughly
as the minimizer which stays closer to the lower constraint and, hence,
oscillates the least. We will show that this infimal minimizer does not expe-
rience symmetry breaking and that enjoys a property analogous to the
property called Birkhoff property in dynamical systems.

A good deal of the argument later will be precisely showing that there
is no symmetry breaking for the infimal minimizer. This will have as a
consequence that all the minimizers remain as minimizers under multipli-
cation of the period. This is not completely obvious because, as we will see
there are more minimizers when we increase the period. The proof of this
absence of symmetry breaking will require the use of the ferromagnetism
assumption, which we have not used so far.

We hope that the examples in Section 5 will clarify this situation.
The construction of the infimal minimizer and the proof of the fact

that it has no symmetry braking require that we use the assumptions we
have made on the structure of the functional and on the ferromagnetism
of the interaction.

We start by observing that the functional H defining the models has
a quadratic part, a linear part, and a constant. Namely:

Q�(s) =
∑

i∈�
j∈Z

d

|i−j |�R

Jij sisj
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L�(s) =
∑

i∈�

hisi

C� =
∑

i∈�

1

We will also introduce the notation

Q�(s, t)=
∑

i∈�
j∈Z

d

|i−j |�R

Ji,j si tj

so that Q�(s)=Qγ (s, s).
Similar definitions hold when we restrict the sum to a finite set, e.g.

to consider the Hamiltonian in a set or when we consider periodified
problems.

With the notations above, we have the following identity

H�(s ∧ t)+H(s ∨ t)=H�(s)+H�(t)+Q�(α,β) (11)

where α,β are given in (9).
Note that (11) remains also true when we restrict the sum to some

particular sets of bonds.
Under the hypothesis of ferromagnetism, for all α,β �0 we have:

Q�(α,β)�0 (12)

because αiβi �0, Jij �0.
Therefore we have:

Proposition 3.1. If s, t are minimizers of HFA
L,ω

in PA
L,ω, then so are

s ∨ t , s ∧ t . In particular, there is an infimal minimizer defined by:

sA
L,ω =

∧

s∈Minimizers

s (13)

Proof. Note that s ∨ t , s ∧ t are configurations with the same peri-
odicity as s, t . hence, by s, t being minimizers, we have

H�(s ∧ t) �H�(s)=H�(t)

H�(s ∨ t) �H�(s)=H�(t)
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On the other hand, using (11) and (12), we have:

H�(s ∧ t)+H�(s ∨ t)�H�(s)+H�(t)

Therefore,

H�(s ∧ t)=H�(s ∨ t)=H�(s)+H�(t)

and s ∧ t , s ∨ t are minimizers.

Clearly, once we prescribe R, A, the infimal minimizer is unique since
it is given by the formula (13).

This has the important consequence that there is no symmetry
breaking (Proposition 3.2) which in turn will lead to the fact that SA

ω is
a minimizer against configurations that respect the boundary conditions
(Proposition 3.3).

Remark 3.2. The physical interpretation of the infimal minimizer is
that it would be the minimizer if we introduced a very small magnetic field
(or an small pressure in the lattice gas interpretation) but maintained the
lower constraint. Hence, it can be compared with the use of “infinitesimal
fields”, which is very common in the physical literature.

3.2.1. Absence of symmetry breaking

In the following proposition, we show that for any K ∈N, if we con-
sider perturbations with K-times the period, the infimal minimizer is also
a minimizer among those. Indeed, it is the infimal minimizer for functions
with K period.

Proposition 3.2. Let K,M ∈N. Denote L=K ·M. Let A∈R
+. Then

sA
L,ω = sA

M,ω (14)

Proof. We define

s̃ =
∧

k∈MRω/LRω

Tks
A
L,ω

since 0∈MRω/LRω we have s̃ � sA
L,ω.

It is important to note that s̃ ∈PA
M,ω.

Since Tk, sA
L,ω are minimizers in PA

L,ω, we obtain, applying Proposi-
tion 3.3, that s̃ is a minimizers in PA

L,ω.
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From the definition of infimal minimizer we obtain

s̃ � sA
L,ω

which with the observation after the definition implies s̃ = sA
L,ω.

Using that sA
L,ω and sA

M,ω are minimizers of their respective function-
als we obtain

HFA
L,ω

(sA
L,ω)�HFA

L,ω
(sA

M,ω)

HFA
M,ω

(sA
M,ω)�HFA

M,ω
(sA

L,ω)

On the other hand, for configurations s ∈PA
M,ω we have

HFA
L,ω

(s)=#
(

MRω

LRω

)

HFA
L,ω

(s) (15)

Using (18) and (15) we obtain

HFA
L,ω

(sA
L,ω)=HFA

L,ω
(sA

M,ω)

HFA
M,ω

(sA
L,ω)=HFA

M,ω
(sA

M,ω)

Hence we obtain that sA
L,ω is a minimizer in PA

M,ω and sA
M,ω is a min-

imizer in PA
L,ω.

Therefore, using the definition of infimal minimizer, we obtain

sA
L,ω � sA

M,ω

sA
M,ω � sA

L,ω

and therefore, the claim of Proposition 3.2.

As a corollary of Proposition 3.2, we obtain:

Corollary 3.1. All minimizers in PA
Rω

are minimizers in PA
KRω

The proof is simply observing that the energy of a minimizer with a
certain period is the same as that of the infimal minimizer.

Hence, if we consider a minimizer u with unit period its energy in
the unit period will be the same as that of the infimal minimizer of unit
period. Since the infimal minimizer of period K is just Kd copies of the
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infimal minimizer, we obtain that the energy of the minimizers with period
K is Kd times the energy of a minimizer of period 1, which is the same
as the energy of considering u in period K. Hence, u is also a minimizer
in period K.

Remark 3.3. The phenomenon that minimizers under perturbations
of one period are not minimizers under perturbations of a longer period
– hence the energy of the minimizer decreases with the period – happens
in many variational problems. It appears already in ref. 9.

This phenomenon often prevents to take the limit of minimizers when
we change the period to an irrational period.

Note that the argument above implies that if there is a way of select-
ing a unique minimizer, the Hedlund phenomena does not happen.

The Corollary 3.1 is somewhat surprising since we will see in Sec-
tion 5 that, even in the classical Ising model, there are more minimizers
in PA

KRω
than in PA

Rω
.

Notice that, since K is arbitrary, it immediately follows from Proposi-
tion 3.2. given any perturbation of sA

L,ω of bounded support, we can find
a K large enough so that it can be considered as a perturbation in a fun-
damental domain of the KN perturbation. Hence, we have established:

Proposition 3.3. sA
L,ω is a class-A minimizer among the configura-

tions in PA
ω .

That is, sA
ω is a minimizer for all the functions that satisfy the bound-

ary conditions, irrespective of periodicity. Given the fact that SA
L,ω is

independent of L we will just use the notation SA
ω from now on.

3.2.2. The Birkhoff property

The following property of the infimal minimizer is quite analogous to
a property that is commonly called “Birkhoff property” in dynamical sys-
tems.

In the following Proposition 3.4, we prove it for the infimal mini-
mizer.

Proposition 3.4. Let sA
ω be the infimal minimizer as before (in par-

ticular, recall that ω∈ 1
N

Z
d )

Let k ∈NZ
d then,

Tks
A
ω � sA

ω k ·ω�0
(16)

Tks
A
ω � sA

ω k ·ω�0
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Proof. Because of (8) Tks
A
ω is a minimizer for HTkFA

ω
. We note that

Tks
A
ω ∈PA

ω .
We will prove the inequality (16) for

ω ·k �0. (17)

The other case will be identical.
Note that, under the assumption (17), i ·ω�0 implies (i +k) ·ω�0.

Hence,

(Tks
A
ω )i = (sA

ω )i+k =+1.

Therefore,

sA
ω ∧Tks

A
ω ∈PA

ω .

Similarly, we obtain that

sA
ω ∨Tks

A
ω ⊂TkPA

ω

We have therefore

HFA
ω
(sA

ω ∧Tks
A
ω )�HFA

ω
(sA

ω )

HTkFA
ω
(sA

ω ∧Tks
A
ω )�HTkFA

ω
(Tks

A
ω ) (18)

We note that

FA
ω ⊂FA−k·ω/|ω|

ω

TkFA
ω ⊂FA−k·ω/|ω|

ω

Moreover, denoting � ≡FA−k·ω/|ω|
ω , the periodicity and the zero flux con-

dition imply that

H�(s) = HFA
ω
(s) ∀ s ∈PA

ω

H�(s) = HTkFA
ω
(s) ∀ s ∈TkPA

ω (19)

The reason for this equality is that in � − FA
ω , because of the

boundary conditions, the quadratic interaction term does not give any
contribution. The contribution of the magnetic field term is zero because
of the zero flux condition. Hence (18) becomes:
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H�(sA
ω ∧Tks

A
ω )�H�(sA

ω )

H�(sA
ω ∨Tks

A
ω )�H�(Tks

A
ω )

Using (12), we obtain:

H�(sA
ω ∧Tks

A
ω )�H�(sA

ω ),

H�(sA
ω ∨Tks

A
ω )�H�(sA

ω )

Using again (19) we obtain:

HFA
ω
(sA

ω ∧Tks
A
ω )�HFA

ω
(sA

ω )

Therefore sA
ω ∧Tks

A
ω is a minimizer. Since sA

ω is the infimal minimizer, we
obtain

sA
ω ∧Tks

A
ω � sA

ω

Therefore

Tks
A
ω � sA

ω

which is the desired conclusion.
The case ω ·k �0 is proved exactly in the same way.

Remark 3.4. We note that Propositions 12 and 3.4 have a natural
geometric interpretation in terms of perimeters of contours. For example,
the conclusion Proposition 12 reads:

Per(S1 ∪S2)+Per(S1 ∩S2)�Per(S1)+Per(S2)

Such interpretations appear naturally in the geometric measure theory
problems considered in ref. 4.

3.3. Bounding the oscillation of the infimal minimizer

To finish the proof of Theorem 2.1, we will just need to show that,
if we take A large enough – but independent of ω, the orientation of the
interface –, the infimal minimizer will be an unconstrained minimizer and
will not touch the boundaries.
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The basic idea is that a minimizer cannot oscillate too much in an
small scale since this will force it to have a very large energy in this scale
and one can easily produce configurations with smaller energy. Using the
Birkhoff property, we will use this information on small scales to control
the large scales.

More precisely, our goal is to show.

Lemma 3.1. There exists an M large enough – depending on the
properties of the model but independent of ω – such that for any A�M,
we have:

sA
ω = sM

ω

Lemma 3.1 has as a corollary that the infimal minimizer sM
ω is com-

pletely unconstrained.
Indeed, if there was a periodic configuration u such that H(u)�H(s)

and ∂u ⊂ {i| − A|ω| � i · ω � A|ω|}, we see that for some k ∈ Z
d we have

∂Tku⊂{i|−A|ω|� i ·ω�A|ω|}.
Hence,

H(u)�H(s2A
ω )=H(sM

ω ).

In other words, the energy of the configuration sM
ω cannot be lowered by

compact perturbations.

Remark 3.5. The above corollary can be interpreted as a manifesta-
tion of the “action-reaction” principle. Once we know that the upper con-
straint is not acting on the interface, we conclude that the lower constraint
is not acting either.

Once we have that sM
ω is a ground state and that its interface is con-

tained in a strip of width independent of ω, we see that, given ω∗ =
limn→∞ ωn with ωn ∈ Q

d we can – by passing to a subsequence – obtain
sω∗ = lim sωn . This sω∗ will be a ground state and therefore, we have estab-
lished Theorem 2.1 as soon as we prove Lemma 3.1.

The rest of this section is devoted to proving Lemma 3.1.
We introduce the notation for �∈N, x ∈Z

d

C�
x ≡{0, . . . , �−1}d +x.

That is C�
x is a cube of side � with the lower vertex at x.

A corollary of Proposition 3.4 is:
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Proposition 3.5. If (sA
ω )i =−1 for all i ∈CN

x , then,

(sA
ω )i =−1 ∀ i | |ω · i �x ·ω+N

√
d · |ω|.

Proof. By the Birkhoff property

(sA
ω )i =−1 ∀ i ∈

⋃

k∈NZ
d

k·ω�0

CN
x+k,

The set above is a collection of cubes of size N on a semi-lattice of size
N . Hence, it contains a semi-plane.

In view of Proposition 3.5 to show that the interfaces of the infimal
ground state sA

ω is contained in a strip of uniform width M it suffices to
show:

Proposition 3.6. Assume that A�M (where M can be chosen inde-
pendent of ω) then there exists an x ∈Z

d such that

0�ω ·x �A−
√

dN

(sA
ω )i =−1 i ∈CN

x .

Proof. This will be a covering argument very similar to that used in
ref. 4 but somewhat simpler since the density estimates used in ref. 4 are
not needed in this case.

We will show that, we can bound the energy of a configuration from
below by the number of cubes it touches multiplied by a constant. We
also note that the energy of a configuration is bounded by the energy of
a plane, which can be bounded from below by the area of the base of the
strip times a constant. Moreover, the number of cubes in a strip is pro-
portional to the area of the base of the strip multiplied by the height of
the strip (see Fig. 1). The upshot of the discussion is that if the width of
the strip is large enough (independent of the orientation), then there has
to be a unit cube that is not touched by the interface. In the following we
give a more formal proof.

Given a fundamental domain FA
ω we consider a collection of disjoint

cubes centered in points x

C3N
x , x ∈3NZ

d , C3N
x ⊂FA

ω



Interfaces in Periodic Models 707

In each of the cubes C3N
x , we consider the cubes CN

x with the same cen-
ter x than C3N

x but well inside C3N
x . We note that the cubes C3N

x do not
overlap and cover the fundamental domain rather completely except for a
sliver near the edges.

We make several observations. The first two are purely geometric
about the covering as indicated. The next two involve the Hamiltonians
and the properties of the ground states. Note that item (iii) below uses the
full strength of the assumption H2, so far, we have used only the weak fer-
romagnetic part.

We can find a constant B (geometrically the area of the base of FA
ω )

such that

(i) Denote by B the set

B ≡FA
ω −

⋃

x∈�

C3N
x

(the set that is not covered by the cubes).
We have

# B <Bα

Fig. 1. Illustration of the fundamental domain FA
ω , the cubes C3N

x and the cubes CN
x used

in the proof of Proposition 3.6.
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where #B denotes the number of sites in B.
This means that we can cover the whole fundamental domain by the
cubes C3N

x except for a thin sliver near the boundary.
The usual formula for the volume shows that it suffices to take
α =√

d 3N .
(ii) Given M, we have that

#
{
x |d(C3N

x ,�)�M
}

�BM
1

(3N)d
− Bα

(3N)d
.

Once we have item (i) this result follows simply by noticing that each
center has associated a cube of volume (3N)d . So that the number
of centers has to be bigger or equal than the total volume covered
divided by the volume of each cube.

(iii) Given any configuration s we have

HC3N
x

(s)�0 HCN
y(x)

(s)�0.

If the cubes do not involve any interfaces, the result is obvious
because we assumed that the flux of the magnetic field is zero, so that
the final result is zero.
If there is an interface, by assumption H2 there is one interaction
term which is negative and bounded away from zero and the other
interaction terms are positive. The other contribution to the energy is
the the magnetic field over the incomplete box. By assumption H4,
which says that the magnetic field is small enough, these terms can-
not overcome the negative term which was bounded away from zero.

(iv) In this term we make more precise the results before when there is an
interface in the small cube.
Assume that

∂s ∩CN
y(x) �=∅.

Then

HC3M
x

(s)�γ.

Observe that it suffices to take

γ = inf
|i−j |=1

Jij −3d�|hi |.

(v) Finally, we obtain a bound of the energy associated to the set B
introduced in point (i) which is not covered by the cubes.
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HB(s)�−Bα sup
i

|hi |.

This is obvious because of the point (i) and the interaction can
be bounded from below by the magnetic field terms, which can be
bounded from below as indicated.
Note that, under the assumption that h is small we have that the con-
stant γ is strictly positive.

In the previous remarks we have obtained a lower bound of the num-
ber of cubes (see item (ii)). Note that this number grows with M and it is
proportional to B.

We also obtained a lower bound of the energy of the cubes C3N
x for

which CN
x intersects the interface (see item (iv)). This and item (iii) lead to

a lower bound for the energy in terms of the number of cubes CN
x which

intersect the interface. Since the energy of the minimizer is bounded from
above by a number independent of M but proportional to B. – by com-
paring e.g. with a plane –. Putting bounds together the upper and lower
bounds for the energy of the interface, we obtain an upper bound on the
number of cubes CN

x which intersect the interface.
By comparing the upper bound on the number of cubes that inter-

sect the interface and the lower bounds in the number of existing cubes,
we conclude that, when M is large enough there is a cube that does not
intersect the interface.

We proceed to give some more details on the argument which will
allow us to check that the width required is indeed independent on the
orientation of the plane.

Proposition 3.7. Denote by N (s)M the number of cubes CN
y(x) which

intersect the interface of s and such that d(y(x),π) � M. Then, we have
for A�M

HFA
ω
(s)�N M(s)γ −Bα

The proof of Proposition 3.7 is obvious if we realize that

HFA
ω
(s)=HB(s)+

∑

x∈�

HC3M
x

(s)

We note that all the H 3N
x (s)� 0. Hence, we obtain a lower bound of the

sum if we restrict it only to the cubes such that a CN
y(x) intersects the inter-

face and d(C3N
s ,π) � M. Moreover, a lower bound of the term HB(s) is

contained in the point (v).
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We also observe that the test configuration s∗ defined by

s∗
i =

{
+1 ω · i � |ω|
−1 otherwise

satisfies

HFA
ω
(s∗)�Bδ

where δ � sup |Jij |+ suphi . Therefore:

HFA
ω
(sA

ω )�Bδ (20)

Comparing (20) with 3.7 we obtain

N M(sA
ω )� Bδ

γ
+ Bα

γ

Since the number of cubes at a distance M is bounded from below in
the point (ii), we obtain that if

M � (3N)d
[

(1−α)−1
[(δ +α

γ

)
+1

]]

(21)

there is one cube at a distance less than M such that it does not intersect
the interfaced of sA

ω .

We emphasize that the condition (21) is independent of B and, hence,
independent of ω.

Applying Proposition 3.5 with Proposition 3.6 we obtain that (sA
ω )i =

−1 whenever ω · i �M|ω| independently of A. This establishes Lemma 3.1
and, by the arguments at the beginning of this section, it proves Theorem
2.1.

4. PROOF OF THEOREM 2.2

4.1. Existence of the limits

We will first prove the existence of the limit of the average energy
when we consider sequences of cubes.

Once we prove the result with enough uniformity with respect to the
direction and with respect to the ground state, as well as with very explicit
error estimates, the existence of the limits claimed in Theorem 2.2 will
follow easily by approximating the domain λ� by cubes.



Interfaces in Periodic Models 711

The first result that we will prove that the average energy of a large
cube is largely independent of which cube and which plane-like minimizer
we are considering.

This will be the basis of much of the uniformity that we need later.
Note that we establish that for cubes of size L, up to errors which are
much smaller than the area of the boundary, the energy associated to the
cube is determined by the area of the intersection.

Proposition 4.1. There exists a constant � independent of the
cubes, the strips and the ground states (it may depend on the model and
the constant M in Eq. (5) for the state) with the following property:

Let s, s′ be class-A minimizers, contained in strips �, �′ of width M

around parallel planes �, �′ respectively.
Assume without loss of generality that � +k =�′ for some k ∈NZ

d .
Let Q, Q′ be cubes of side L – L sufficiently large – Assume that

|#(� ∩Q)−#(�′ ∩Q′)|� (�/2)Ld−2 (22)

Then,

|HQ(s)−HQ′(s′)|��Ld−2 (23)

Note that in Theorem 2.1 we have shown that the constant M can
be taken to be independent of the orientation for the infimal minimizer.
Hence, if we apply Proposition 4.1 to the configurations produced in The-
orem 2.1, we get that � depends only on the model. Of course, the way
that we formulated it, applies to other ground states provided that they are
plane-like.

The assumption that the strips are congruent under translations can
always be arranged by making them slightly bigger. (so that the interfaces
will always be contained) anyway. The amount is not bigger than N

√
d.

Hence, for large L this is rather irrelevant.

Proof. The proof is very simple in the case that the cubes and the
intersections are congruent by translations which are multiple of N , the
period of the interaction. We can produce an configuration s′′ that agrees
with s outside of Q and whose intersection with Q is a translation by mul-
tiples of N of the intersection of s′ with Q.

Since s is a ground state, we conclude that HQR(s′′) � HQR(s). But
|HQR(s′′)−H

Q′R (s′)|��Ld−2 because the terms in the energy differ only
in the boundary terms. Since the interface is contained in a strip of width
M, the number of affected terms can be bounded by CMRLd−1 where C
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is a constant that depends only on the dimension and the geometry and
R is the range of the interaction.

By exchanging the role of s, s′, we obtain the desired result.
When the cubes are not congruent by translations multiples of N , we

note that we can discard some points in the cubes, which are at a distance
not more than N from the boundary so that we obtain cubes Q̃, Q̃′ that
are congruent under translations by N .

Clearly, we have |HQ(s)−H
Q̃

(s)|��Ld−2.

In view of Proposition 23, from now on, we will speak about the
energy of a plane-like ground state in a cube of length L and we will not
bother specifying which cube or which ground state. As Proposition 4.1
shows this is defined up to an additive term of size ��Ld−2, which will
not affect any of the subsequent arguments.

The following result gives us some crude bounds of a form similar to
that of the desired limit. Later we will refine them.

Proposition 4.2. Under the assumptions of Theorem 2.2.
Let s be a plane-like minimizer. Let Q be a cube of length L.
For some suitable constants �1,�2, �3 depending only on the model,

and on M, we have:

�1|�ω ∩Q|d−1 −�3L
d−2 � HQ(s)

� �2|�ω ∩Q|d−1 +�3L
d−2. (24)

Proof. The upper bound is obtained by comparing the energy of the
state s with the state that has an interface along the plane. The terms
Ld−2 come from the modifications that one has to do to match the bound-
ary conditions.

The lower bound follows from noting that the interface is the bound-
ary of a set, so that we can bound the number of points in the interface by
the area of the intersection. The arguments are very similar to the remarks
that lead to a proof of Proposition 3.7. We refer there for more details.

The energy of interaction of a site in the boundary is bounded from
below by a constant. Hence, the energy of the interaction is bounded from
below by a constant times the number of points in the interface. Hence, by
a constant times the area of the intersection of the plane with the cube.

By the assumption of zero magnetic flux, the absolute value of the
energy due to the magnetic field can be bounded by the strength of the
magnetic field times the number of N -cubes that contain the some point
in the interface.
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The following definition will be useful since it selects a particular class
of intersections.

Definition 4.1. Given a cube and a strip, we say that the intersec-
tion with the cube is clean if

• Whenever the intersection with one face of the cube is non-empty,
the intersection with the parallel face of the cube is not empty.

• The intersection does not include any intersection of more than
two faces.

Note that for all the clean intersections between cubes of the same
length and parallel planes have the same area.

Now, we study the limit of the cubes growing larger.

Proposition 4.3. Let s be a plane-like minimizer. Let QL, Q2L be
cubes of size L, 2L, respectively.

Assume that the plane-like minimizer s intersects cleanly QL and that
the minimizer s′ intersects cleanly Q2L.

Then

|2d−1HQL
(s)−HQ2L

(s′)|��Ld−2. (25)

Proof. Given the uniformity properties proved in Proposition 4.1, it
suffices to observe that the intersection in the cube Q2L can be covered by
2d−1 disjoint cubes with a clean intersection.

In effect, suppose without loss of generality that the plane of intersec-
tion is a graph over of a linear function of the first d −1 variables to the
d one and that the angle with the horizontal is smaller than 1. (It suffices
to reorder the components so that the d component is the largest one).

Take a dyadic decomposition of the base of Q2L. For each of these
d − 1 cubes Q̃ of size L, we can find an interval I of size L so that the
cube Q̃× I has a clean intersection with the plane.

We define

A+(L) = supL−d+1HQL
(s),

A−(L) = inf L−d+1HQL
(s) (26)

where the sup, inf are taken over all the cubes of size L and all the plane
like s that have a clean intersection with them.

Proposition 4.2 tells us that the functions A± are well defined and
that we have
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A+(L)−A−(L)��L−1.

Using Proposition 4.3 we have

|A±(2L)−A±(L)|��L−1.

From this, it clearly follows that limL→∞ A±(L) exists and that it is
equal for both functions.

Moreover, the convergence is rather uniform.
If we approximate the set λ� by cubes of size λ1/2 we see that we can

cover the intersection of λ� ∩�ω except for a set whose measure can be
bounded by λd−2λ1/2.

We have a number of cubes, each of which has an average energy
A(ω) up to an error λ−1/2.

Hence, the desired result follows.
It seems that, if one used coverings more efficient than the covering

by uniform cubes, one could get better estimates for the remainder, but we
will not pursue this here.

4.2. Convexity properties of the averaged energy

To prove the convexity of the averaged energy, the argument used in
ref. 4 works without modification. For the convenience of the reader we
repeat here the most salient steps. The argument is illustrated in Fig. 2
which is reproduced from ref. 4.

Given the uniformity properties established in the previous subsec-
tion, we can compute approximations of A(ω) just by taking a very large
set and computing the energy of the intersection of this set with any of
the plane-like ground states whose interface lies in a neighborhood of the
plane �ω

By the homogeneity, it is enough to show that

A(ω1)+A(ω2)�A(ω1 +ω2).

There is only anything to prove in the case that ω1 is not parallel to ω2.
By the uniformity of the limits, it is enough to take very large sets.

We just take very large cylinders sets whose transversal section is indicated
in Fig. 2. We see that taking the joining of the sets corresponding to ω1
and ω2 as comparisons with the infimal minimizer corresponding to ω3
and noting that for all of them, the error from the average is uniformly
small if the size is big enough, we obtain the desired result.
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Fig. 2. Illustration of the argument to show that A is convex.

Since A is sublinear, it follows that it is Lipschitz. As we will see in
Section 5 for the Ising model, it is not C1.

5. SOME EXAMPLES

5.1. The classical Ising model

This corresponds to taking Jij =1 when |i −j |=1 and 0 otherwise. In
particular, this satisfies the very strong non-degeneracy assumption alluded
to in Remark 2.4.

It is easy to see that the minimization problem in a periodic class
admits minimizers that are not Birkhoff. For dimension d = 2, some of
them are depicted in Fig. 3.

Non-Birkhoff minimizers can be constructed by fixing two points in
the interface as required by the periodicity. The interface consists of a path
that joins these two points and consists of a horizontal segment and a ver-
tical segment. (The fact that these are minimizers is obvious because if we
consider the interface as a path, the length is just the taxicab distance.)

It is clear that if we multiply by K the periodicity allowed in the
configurations, a similar construction will give an interface that recedes
from the plane by an amount K times larger. Hence, in the classical Ising
model, there is symmetry breaking for the ground states.

Note that in any dimension, including d = 2, given a box of size K,
for periodic conditions which are not along the direction of the axis, it
is possible to find ground states that are at a distance greater that c(ω)K

from the boundary imposed by the boundary conditions.
Notice also that it is possible to chose a sequence of these minimiz-

ers so that their oscillations diverge, hence, it is impossible to make them
converge to a limit even after translating them.
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Fig. 3. Non-Birkhoff minimizers and the infimal minimizer for two dimensional classical
Ising models.

In contrast, we see that the infimal ground state can be obtained by
removing squares with two sides in the interface from the minimizer above
(this is a modification that does not change the energy of the interface) as
much as possible compatible with the constraint that the interface should
lie above the line {ω · x = 0}. The interface of these infimal ground states
indeed, does not recede more that a fixed constant for the plane and, if
we double the period, the minimizer is the same.

Note, however that for some special periodicities – when the plane
�ω is a coordinate plane, all the minimizers consist only of straight
lines. These minimizers are Birkhoff and do not exhibit symmetry break-
ing. Hence, for the classical Ising model, the symmetry breaking and the
Birkhoff property for all periodic minimizers happen or not depending on
the orientation of the boundary conditions.

The considerations here should serve as a counterpoint with the anal-
ogies with the theory of minimal surfaces mentioned in Remark 2.2. In
ref. 6, is is shown all the periodic minimal surfaces are Birkhoff and in
ref. 5 it is shown that all periodic minimizers in spin systems and in
Dirichlet problems are Birkhoff and that there is no symmetry breaking.

This raises the question of whether there are discrete spin models for
which the property that there is no symmetry breaking in ground states



Interfaces in Periodic Models 717

and that all ground states are Birkhoff is true. The results of the above
papers suggest that this should be true for models which resemble more
the continuous models. This suggests that the Birkhoff property for all
ground states could be true for models with a longer range interaction (or
with several body interactions).

We also note that since the minimizers for a given period are just seg-
ments in the horizontal and vertical directions, the average energy can be
readily computed and it is

AIsing(ω)=|ω1|+ |ω2|

This function is, clearly Lipschitz but it is not C1.

Remark 5.1. A classical problem in statistical mechanics is the
study of the interfaces in Ising models for low temperature and the surface
tension as a function of the temperature. A collection of classical papers
in this area is ref. 18.

Note that even for the Ising model at zero temperature, the fluctua-
tions for interfaces not oriented along the coordinate axis is proportional
to the size of the domain,

A related problem is the study of the asymptotic shape of a crystal
which has a constraint which is the total number of sites occupied. This
goes under the name of the Wulff construction(2,7) and references there.
Remarkably similar problems for periodic media have been considered in
homogeneization theory. One could expect that, for periodic media, at
zero temperature, the shape of a crystal would be a Wulff shape with
respect to the average energy A considered here.

5.2. Layered material

Another example for which it is much easier to create complicated
ground states is a layered material in which the layers do not interact.

That is Jij =−1 if |i − j | = 1 and ed · (i − j)= 0 where ed is the unit
vector along the d coordinate. Otherwise, Ji,j =0.

Clearly, a ground state can be obtained by choosing any ground state
in each of the layers. Hence, it is possible to chose ground states which are
not Birkhoff and which do not converge.

5.3. Antiferromagnetic models, large magnetic fields

We consider the Ising model in the plane, but we include a small peri-
odic patches of antiferromagnetic interactions.
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That is, Ji,j = 0 when |i − j | �= 0. When |i − j | = 1, Ji,j = 1 whenever
d(i/20,Z

2)<1/3, d(j/10,Z
2)<1/3 and Ji,j =1 otherwise.

We see that there cannot be any ground states with plane-like inter-
faces. Indeed, if we had a configuration as those here, we could create
another configuration in which we have flipped a ball around a point in
20Z

2. Since the new interface has negative energy, we see that the original
configuration cannot be a ground state.

The same effect can be obtained if we concentrate a large and nega-
tive magnetic field in balls around the points in 20Z

2 and put a magnetic
field in the rest so as to adjust the flux condition. Again, we note that
one can always lower the energy by creating an interface near any point
in 20Z

2, so that there cannot be any plane-like ground state.
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